Three practical, real-world data science applications

Roger HuangRoger Huang | 4 minute read | August 31, 2016
data science applications

This post on real-world data science applications was originally featured on the Yhat blog.

In our very first whitepaper, “Applied Data Science,” we translated the hype-y term of data science into the plain english definition of “using data to make better decisions, optimize processes and improve products and services.” We also described the central goal of data science: getting statistical models into production.

Yesterday, we released a brand new whitepaper about data science in the wild called, “Data Science in Practice.” In this whitepaper we introduce five common data science applications that build upon the concepts we introduced in our first whitepaper. Our goal is to debunk the impression that data science is some type of obscure black magic and give you concrete examples of how it is applied in reality. Here are three real-world data science applications.

Three real-world data science applications

Application 1: Recommender Systems

data science applications
Recommender systems, also known as recommender engines, are one of the most well known data science applications. Recommender systems are a subclass of information filtering systems, systems that cut through the noise of all options and present users with just the subset of options they’ll find appealing. The data being filtered can range from products on an e-commerce site to dating matches that appear as you search for ‘the one.’

Recommender systems offer a more intelligent approach to information filtering than a simple search algorithm by introducing users to items they might not have otherwise discovered. Recommender systems generally take either a collaborative or content-based approach to filtering. Collaborative filtering considers a user’s previous behavior, as well as the behavior of similar users. Content-based filtering provides recommendations based on discrete attributes or assigned characteristics.

Data scientists at energy software company Tendril opted for a hybrid approach that combines both collaborative and content-based filtering. Tendril provides analytics and consumer solutions to energy suppliers, including which energy products consumers would most likely consider. “We use Support Vector Regression models to predict household energy consumption to provide our clients with in-depth, personalized information about their customers,” explains Mark Gately, Data Analytics Manager at Tendril. “This detailed information is also used in recommendation models, which help match eligible customers with new or existing energy products.”

Get To Know Other Data Science Students

Haotian Wu

Haotian Wu

Data Scientist at RepTrak

Read Story

Samuel Okoye

Samuel Okoye

IT Consultant at Kforce

Read Story

Karen Masterson

Karen Masterson

Data Analyst at Verizon Digital Media Services

Read Story

Application 2: Credit Scoring

data science applications with Springboard
If you have ever applied for a credit card or a loan, you’re likely already familiar with the concept of credit scoring. What you may be less aware of is the set of decision management rules evaluating how likely an applicant is to repay debts behind the scenes.

The first general purpose credit scoring algorithm, now known as the FICO score, was introduced in 1989. The FICO score is still one of the most widely used models in the United States today, though peer-to-peer and direct lending organizations have focused on developing new techniques over the past few years. These new machine learning models and algorithms capture innovative factors and relationships that traditional loan scorecards couldn’t, like how applicants manage monthly cash flow or whether friends or community members would endorse the applicant.

One such company is Ferratum Bank, a pioneer in financial technology and mobile consumer lending since 2005. “We developed complex statistical and machine learning models to enable smarter lending decisions,” explains Scott Donnelly, Director of Business Lending at Ferratum Bank. “By getting creative with our approach and adopting innovative technologies, we’ve been able to reinvent how both consumers and businesses obtain loans. This has allowed us to reach prospective customers that in the past may have been overlooked by traditional banking institutions.”

Application 3: Dynamic Pricing

data science applications
You walk out of the store, arms full of groceries, only to realize that a torrential downpour began as you perused the produce inside. You struggle to retrieve your phone, check your favorite ride app and are dismayed to find…a 2.1x surge!? Welcome to your first lesson on dynamic pricing.

Businesses use dynamic pricing algorithms to model rates as a function of supply, demand, competitor pricing, and exogenous factors (e.g. weather or time). Many fields, from airline travel to athletics admission ticketing, employ dynamic pricing to maximize expected revenue. The nuts and bolts of dynamic pricing strategies vary widely, though generalized linear models and classification trees are popular techniques for estimating the “right” (lowest/highest) price that consumers are willing to pay for a book, a flight, or a cab.

Data science is bringing about a dramatic change in our daily lives. Simultaneously, credit must be given to all those data scientists, machine learning engineers, and deep learning researchers that work around the clock to make our lives easier and more comfortable.


That’s it for today’s sneak preview of the whitepaper. If you liked what you read & want to learn about more practical applications of data science, like Customer Churn and Fraud Detection, download Yhat’s “Data Science in Practice” whitepaper.

Since you’re here…
Thinking about a career in data science? Enroll in our Data Science Bootcamp, and we’ll get you hired in 6 months. If you’re just getting started, take a peek at our foundational Data Science Course, and don’t forget to peep our student reviews. The data’s on our side.

Roger Huang

About Roger Huang

Roger has always been inspired to learn more. He has written for Entrepreneur, TechCrunch, The Next Web, VentureBeat, and Techvibes. Previously, he led Content Marketing and Growth efforts at Springboard.